An exact algorithm for the flexible multilevel project scheduling problem
نویسندگان
چکیده
منابع مشابه
An Exact Algorithm for the Mode Identity Project Scheduling Problem
In this paper we consider the non-preemptive variant of a multi-mode resource constrained project scheduling problem (MRCPSP) with mode identity, in which a set of project activities is partitioned into disjoint subsets while all activities forming one subset have to be processed in the same mode. We present a depth-first branch and bound algorithm for the resource constrained project schedulin...
متن کاملan exact algorithm for the mode identity project scheduling problem
in this paper we consider the non-preemptive variant of a multi-mode resource constrained project scheduling problem (mrcpsp) with mode identity, in which a set of project activities is partitioned into disjoint subsets while all activities forming one subset have to be processed in the same mode. we present a depth-first branch and bound algorithm for the resource constrained project schedulin...
متن کاملAn Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm
In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولAn Exact Algorithm for the Resource Constrained Project Scheduling Problem Based on a New Mathematical Formulation
In this paper we consider the Project Scheduling Problem with resource constraints, where the objective is to minimize the project makespan. We present a new 0-1 linear programming formulation of the problem that requires an exponential number of variables, corresponding to all feasible subsets of activities that can be simultaneously executed without violating resource or precedence constraint...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expert Systems with Applications
سال: 2020
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2020.113485